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Abstract

Among many strategies for �nancial trading, pairs trading has been playing an important role

in practical and academic frameworks. Loosely speaking, it consists of a statistical arbitrage

tool for identifying and exploiting ine�ciencies of two long-term related �nancial assets. When

a signi�cant deviation from this equilibrium is observed, a pro�t might result. In this work,

we propose a pairs trading strategy entirely based on linear state space models designed for

modeling the spread formed with a pair of assets. Once an adequate state space model for

the spread is estimated, we calculate conditional probabilities that the spread will return to its

long-term mean. The strategy is activated upon large values of these conditional probabilities:

if the latter become large, the spread is bought or sold accordingly. Three applications with

real data from the US and Brazilian markets are o�ered and indicate that a very basic portfolio

consisting on a sole spread already outperforms some of the main market benchmarks.

Key words: Kalman �lter, mean-reverting conditional probabilities, pairs trading, spread,

state space models, statistical arbitrage.
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Resumo

Dentre as muitas estratégias no mercado �nanceiro, uma das mais populares em estudos acadê-

micos é a estratégia denominada pairs trading. Ela consiste em uma estratégia de arbitragem

estatística, que procura identi�car e explorar ine�ciências, de dois ativos �nanceiros relacio-

nados no longo prazo. Quando um desvio deste equilíbrio entre os preços é signi�cativo, um

lucro pode ser obtido mediante aplicação de tais estratégias. Neste trabalho, é proposta uma

estratégia de pairs trading inteiramente baseada em modelos de espaço de estados adequados

para a série temporal do spread formado entre dois ativos. Uma vez estimado o modelo de

espaço de estado adequado para o spread, são calculadas as probabilidades condicionais de que

o spread retorne à sua média de longo prazo. A estratégia é executada quando são observados

altos valores destas probabilidades: o spread é comprado ou vendido. Três aplicações com

dados reais do mercado brasileiro e americano são oferecidas e indicam que uma carteira muito

básica, que consiste em um único spread (par entre ativos), teve resultados melhores do que

alguns dos principais benchmarks de mercado.

Palavras-chaves: arbitragem estatística, �ltro de Kalman, modelo em espaço de estado, pairs

trading, probabilidades condicionais de reversão à média, spread.
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Introduction

Pairs trading is a type of statistical arbitrage strategy that has been �rstly implemented

in the mid 1980's by Nunzio Tartaglia and his group at Morgan Stanley (cf. [39]). Nowadays,

pairs trading is widely used by investment banks and hedge funds. In general terms, a pairs

trading aims at identifying and exploiting market ine�ciencies observed with two long-term

related assets, the two assets are said to form a pair �, mostly by using statistical methods.

When a signi�cant deviation of the prices between the two assets is detected, a trading position

is carried out: the higher priced asset is sold (this is the so-called short position by market

practitioners) and lower priced asset is bought (that is: a short position is taken), with the

hope that mispricing will correct to the long term equilibrium value (cf. [11] and [39]).

In this work, we consider two linear state space models appropriate for modeling spreads

(stationary linear combinations of long term-related assets), with the intent of testing a new

quantitative strategy involving pairs trading. The �rst model is the unobserved component

models proposed by [11]. Such model, which has a Gaussian linear space state form, is a

discrete-time version of the linear mean reverting Ornstein-Uhlenbeck model. The second model

is the traditional stationary autoregressive moving-average, or ARMA, model (cf. [5], [6], [19]

and [12]), whose particular speci�cations are also dealt with in this work under appropriate

linear state forms. We shall prove that this second class of models, even though lacking �nance

theoretical support, encompasses the former proposal by [11] as a particular case. Moving on,
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2 Introduction

we develop a methodology for calculating conditional probabilities (given past and actual spread

data) that the spread will return to its long-term mean by k-steps ahead (the frequency can be

daily or intra-daily), whenever it deviates somehow from the long-term mean at a given time

instant. For such, we propose an alternative augmented state-space form for a given model,

formerly selected and estimated with spread data, and with this enlarged state space form

we apply the Kalman �lter k-steps ahead prediction (see, for instance, [20] and [9]) to obtain

conditional mean vectors and covariance matrices of the k future spreads. The latter is all that

is needed for calculating the conditional probabilities previously mentioned. The quantitative

strategy we shall pursue here is activated according to the rule: if the spread is found to be

considerably below (above) its long-term mean and the conditional probability that the spread

will increases above (decreases below) its long-term mean by k-steps ahead is reasonably large,

buy (sell) the spread.

The dissertation is organized as follows. Chapter 1 brie�y reviews the literature on pairs

trading, without claiming exhaustiveness. Chapter 2 discusses pair trading from the statistical

arbitrage standpoint, enumerating some of its main practical features. Chapter 3 presents the

two aforementioned linear state space models models, discusses their mathematical properties

and embeds each of them into the state space modeling/Kalman �lter framework. Chapter 4

formally discusses how the conditional probabilities that the spread will mean-revert are calcu-

lated, the corresponding computational issues and describes step-by-step how the quantitative

strategy shall be implemented. Chapter 5 o�ers three applications to real data from the US

and Brazilian markets and compares the performances of the proposed strategy with the main

benchmarks and with a former pairs trading strategy already tackled by market practitioners.

Analysis regarding computational e�orts for estimation and goodness-of-�t is included. Chap-

ter 6 o�ers a discussion about the main results obtained in the former chapter and makes some
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comments regarding the use of the methodology in real scenarios. The appendices review the

main Kalman �lter techniques used in the work and provide the proofs of the technical results.
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Chapter 1

Pairs Trading: a glimpse at the literature

This chapter brie�y discusses earlier works on pairs trading strategies, focusing mainly

on spread modeling. A common feature to each of such models � which, to some extent, shall

be also pursued by the models of this paper � consists of recognizing the spread, associated

with a pair of stocks (cf. the naive de�nition of �pair� given in Chapter ), as some kind of

mean-reverting stochastic process, whose parameters are estimated with �nancial market data.

The last paper reviewed in this chapter, by its turn, is an empirical investigation that uses a

simple standard deviation strategy to show that pairs trading can be pro�table after costs.

Elliot et al. [11] developed a Gaussian linear state space models for the mean reversion

behavior of the spread between paired stocks in a continuous time setting. It is assumed that

the �observed� spread St is a noisy observation of some mean-reverting �unobserved� spread xt.

The set-up for parameter estimation was based on a version of the expectation-maximization

(EM) algorithm previously developed in [10]. The pairs trading strategy proposed is this: if

St is larger/smaller than the one-step-ahead estimate x̂t|t−1, then the spread is regarded as

too large/small, and so the trader could take a short/long position in the spread portfolio.

Therefore, a pro�t is expected whenever a price correction occurs.

5



6 CHAPTER 1. PAIRS TRADING: A GLIMPSE AT THE LITERATURE

Triantafyllopoulos & Montana [37] have extended the modeling framework proposed by

Elliot et al. in several ways. First, they introduced time-varying autoregressive (or mean-

reverting) parameters, something that potentially allows the model to adapt itself to sudden

changes in the data. Second, they developed and implemented a Bayesian approach for es-

timating the parameters, providing an on-line estimation scheme. Lastly, they advocated a

procedure known as �exible least squares (FLS) to estimate the coe�cient of co-integration

coe�cient recursively, unveiling possible time-varying co-integration relationship between the

two asset prices.

Vidyamurthy [39] exploited the pairs trading universe in his book. He gives a good back-

ground about the theme and discusses several techniques to choose pairs trading, focusing on

co-integration tests. Moreover, the author explains how pairs trading works and surveys some

methods for dealing with the problem in real settings � for instance: common trends/cointegra-

tion models, arbitrage pricing theory (APT), distance measure and state space models/Kalman

�lter.

It is also worth citing the paper by Avellaneda & Lee [4]. These authors employed prin-

cipal components analysis and sectors Exchange Trade Funds (ETF) for extracting risk factors.

For each method, they modeled the corresponding residuals as mean-reverting processes.

Finally, Gatev et al. [16] studied pairs trading strategy in the U.S. equity market with

daily data over the period from 1962 through 2002. In their study, stocks from companies

that had at least one day out of business have been discarded. A pair formation for each

stock was found by minimizing the squared deviations between the two normalized daily price

series, where dividends were reinvested. The basic strategy consisted of opening a position in

a pair when prices diverge by more than two historical standard deviations and unwind the

position whenever the prices cross each other � and, should prices do not cross after the end
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of trading interval, gains and losses are calculated at the end of the last trading day. Latter,

the performance of this strategy by [16] for the Brazilian stock market case was addressed by

[29]. The latter investigated the period from 2000 until 2006 and tested di�erent conditions of

long and short, ranging between 1.5 and 3 standard deviations. For the data set used, the best

options were those contained between 1.5 and 2 standard deviations.
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Chapter 2

Statistical Arbitrage Strategies

Quoting [22], �when the two legs of a spread are highly correlated and therefore the

opportunity for pro�t from price divergence is of short duration, the trade is called an arbitrage.

True arbitrage has, theoretically, no trading risk, however it is o�set by small pro�ts and limited

opportunity for volume�.

Statistical arbitrage is a class of strategies widely used by hedge funds and proprietary

traders. The distinctive feature of such strategies is that pro�ts can be made by exploiting

statistical mispricing of one or more assets, based on their regular behavior. Despite the use of

the term �arbitrage", such class is not riskless. One of the simplest albeit very popular strategy

that �ts in with the de�nition of statistical arbitrage is pairs trading (cf. [11]). Other types of

statistical arbitrage are discussed in [39] and [30].

Following [39], the �rst use of a pairs trading strategy is attributed to the Wall Street

�quant� Nunzio Tartaglia, who was at Morgan Stanley in the mid 1980. Pairs-trading is based

on the arbitrage pricing theory (APT) (cf. [32]). Informally speaking, if two stocks have

similar characteristics, then the prices of both assets must be more or less the same; that is,

they maintain some degree of equilibrium. When prices diverge, then it is likely that one of the

9



10 CHAPTER 2. STATISTICAL ARBITRAGE STRATEGIES

assets is overpriced and/or the other is underpriced. Basically, pairs trading schemes involve

selling the higher priced asset and buying lower priced asset with the hope that mispricing will

be ultimately corrected by the long term equilibrium value. The di�erence between the two

observed prices is termed spread. Therefore, the idea behind a given pairs trading strategy

is to trade on the oscillations about the equilibrium value of the spread. The oscillations

of the spread occur because the latter is allegedly mean-reverting. One can put on a trade

when the spread deviates substantially from its equilibrium value and unwind the trade when

the equilibrium is restored (cf. [11]). In order for the trade to be potentially pro�table, and

therefore be executable, the deviation must be reasonably larger than trading costs.

Pairs trading is a market-neutral trading strategy. Hence, this strategy strives to provide

positive returns in both bull and bear markets by selecting a large number of long and short

positions with no net exposure to the market (cf. [28] and [25]). The main risks involved in

a pairs trading are: (1) the divergence risk : the long-term equilibrium relation between the

assets may change or even vanish; and (2) the horizon risk : the spread does not converge in a

given horizon of time, hence forcing the traders to close your position before the convergence,

due to worsened mispricing or margin call (cf. [13]). Additional details about pairs trading can

be found in [30] and [39].



Chapter 3

Proposed Models

3.1 What is a pair?

The idea behind a pair (of stocks, bonds, foreign exchanges, commodities etc.) is closely

linked to the econometric concept of cointegration. Rigorously, two time series Yt ∼ I(1) and

Xt ∼ I(1) are said to be cointegrated i� aYt + bXt ∼ I(0) for some a 6= 0 and b 6= 0 � the

notation I(d) means �integrated of order d�. This de�nition shall be enough for the aims of this

work. For richer expositions on the theme and more general de�nitions, see [21], [19] and [12].

Consider now

St = log(Pt1)− [α + βlog(Pt2)] , (3.1.1)

where Pt1 and Pt2 are the prices of assets A1 and A2 in time t, respectively. The time frequency

can be daily or some kind of intraday frequency (second, minute, hour etc.). If log(Pt1) and

log(Pt2) are cointegrated, the spread St is stationary � that is: St ∼ I(0). In such case, α is

the mean of cointegration relationship, β is the cointegration coe�cient, and A1 and A2 form

a pair.

Cointegration, once veri�ed, suggests that St would wander around an equilibrium value.

11



12 CHAPTER 3. PROPOSED MODELS

This is actually the main ingredient for achieving success in a pairs trading. Such value is zero,

in view of α in Eq.(3.1.1). Any expressive deviations from this value can be traded against.

3.2 Unobserved component models: the stochastic spread

approach

Following [11], in this section we assume that the the observed spread St, associated

with a given pair of assets A1 and A2, is a noisy realization of the unobserved or actual mean-

reverting spread xt:

St = xt +Dεt

xt − xt−1 = a− bxt−1 + Cηt

(3.2.1)

where a ∈ <, 0 < b < 2, C > 0, (εt, ηt)
′ ∼ NID (0, I2). Adapting Eqs.(A.1.1) of Appendix A.1

in order to obtain an appropriate state space representation for the model in Eqs.(3.2.1), just

de�ne Zt = 1, dt = 0, Ht = D2, Tt = B ≡ 1 − b, ct = A, Rt = 1 and Qt = C2. Then the

Kalman �lter formulae in Eqs.(A.1.2) of Appendix A.1 turn to

υt = St − at|t−1, Ft = Pt|t−1 +D2,

Kt = BPt|t−1F
−1
t , Lt = B −Kt, t = 1, . . . , n. (3.2.2)

at+1|t = A+Bat|t−1 +Ktυt, Pt+1|t = BPt|t−1L
′
t + C2

Eqs.(3.2.2) can be started under the initial conditions a1|0 = A/(1 − B) and P1|0 = C2/(1 −

B2). Notice that the latter are precisely unconditional �rst- and second-order moments of the

stationary process xt.

This model proposed by Elliot et al. has three interesting features. The �rst is that it

has at least some support from �nance theory, since it can be viewed as a discrete time version

of the Ohrstein-Uhlenbeck continuous time stochastic process � see [33]. The second is that it
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recognizes a mean reverting behavior for the spread. The last good property is a consequence

of the next result, the proof of which is in Appendix A.2:

Proposition 1. If St follows the unobserved component model by Elliot et al. given in Eqs.(3.2.1),

then St ∼ ARMA (1, 1) with restrictions.

This last proposition, besides encapsulating this proposal by Elliot et al. in a more

general class of mean reverting statistical models (next section), suggests a procedure for se-

lecting/discarding Eqs.(3.2.1) as a probabilistic description of some spread time series: if one

obtains evidences from the data that the latter shall not be adequately �tted by any ARMA(1,1)

model, then the proposal by Elliot et al. is necessarily misspeci�ed for being considered in a

pairs trading scheme.

3.3 ARMA models: generalizing the stochastic spread ap-

proach

Because of their mean reverting behavior, stationary autoregressive-moving average

(ARMA) dynamics can be always considered as valid attempts for modeling the spread St.

For instance, one could assume that St ∼ ARMA (2, 2), that is,

St = φ0 + φ1St−1 + φ2St−2 + εt + θ1εt−1 + θ2εt−2, (3.3.1)

where εt ∼ NID (0, σ2) and (φ1, φ2)′ are such that the polynomial p (z) = 1 − φ1z − φ2z
2,

∀z ∈ <, has its two roots outside the unit circle. The latter assumption on the coe�cients φ1

and φ2 is a su�cient condition to St be a stationary process � see [5], [6] and [19]. The same

restrictions could be imposed to the moving average coe�cients θ1 and θ2 in order to guarantee

that St is invertible � that is, εt can be written as a function of Yt, Yt−1, . . . , by means of
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an AR (∞) representation for St � again, see [5], [6] and [19]. Fortunately, such question

regarding invertibility is immaterial under the state space modeling/Kalman �lter framework,

since the latter always makes both likelihood function evaluation and forecasting attainable

tasks independently of the invertibility question, as cleverly discussed by [19], Chaps. 4, 5 and

13.

One can use Eqs.(A.1.1) of Appendix A.1 to accommodate the model in Eq.(3.3.1), and

any other stationary ARMA(p, q) model, under state space representations. Although there

is no unique way of doing such conversion and the literature has been frequently o�ering and

defending several state space forms for ARIMA models � to cite a few books: [20], [5], [6], [19]

and [9] �, in this work the following alternative � for the ARMA(2, 2) model given in Eq.(3.3.1)

� shall be used in the sequel:

Zt =

[
1 0 0 0 0

]
, dt = 0, Ht = 0,

Tt =



φ1 φ2 1 θ1 θ2

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0


, ct =



φ0

0

0

0

0


, Rt =



0

0

1

0

0


, Qt = σ2.

The Kalman �lter formulae in Eqs.(A.1.1)(cf.Appendix A.1) is carried out with the ma-

trices above and can be initialized under the initial conditions a1 =

(
φ0

1− φ1 − φ2

,
φ0

1− φ1 − φ2

, 0, 0, 0

)′
and vec (P1) = (I − T ⊗ T )−1 vec (RQR) .



Chapter 4

A new pairs trading strategy

In this chapter, we discuss the main elements of a quantitative pairs trading strategy

entirely based on the estimation of state space models proposed in Chapter 3. Firstly, in Section

4.1, we give theoretical details on how conditional probabilities that the spread will return to

its long-term mean, by k-steps ahead from a given time instant t, are de�ned. Moving on,

in Section 4.2 we explore the practical matters for e�ectively calculating the aforementioned

probabilities in a on-line fashion � as it will be shown, once an appropriate state space model is

estimated by maximum likelihood (see Appendix A.1), the implementation of the usual Kalman

�lter prediction equations given in Eqs.(A.1.2) to an augmented version of the model shall be

everything needed. Finally, in Section 4.3 the quantitative strategy is described step-by-step,

where the content derived in Sections 4.1 and 4.2 are merged with the trading rule that involves

buying or selling the spread accordingly.

15



16 CHAPTER 4. A NEW PAIRS TRADING STRATEGY

4.1 Mean-reverting conditional probabilities pup and pdown:

theory

The main target for success: to achieve, from a statistical/probabilistic standpoint, a

minimum con�dence that a future observed value of the spread will not take much long to cross

back some long-term value (for instance: its unconditional mean), once the spread observed on

some time t is somewhat distant from that same long-term value. If such task is accomplishable,

one might buy (or sell) the spread on that time t, whenever chances are that he or she will be

able to make a pro�t soon.

Formally, the strategy that we now begin to build is strongly based upon the ability of

calculating conditional probabilities that the spread will revert to its long-term mean � or any

other convenient value c to be chosen � by k steps ahead, given the past and actual spread

data; that is:

pup (t, k, c) = P [(St+1 > c) ∪ (St+2 > c) ∪ · · · ∪ (St+k > c)|Ft]

= 1− P [(St+1 ≤ c, St+2 ≤ c, . . . , St+k ≤ c|Ft]

= 1− FSt+1,St+2,...,St+k|Ft(c, c, . . . , c),

pdown (t, k, c) = P [(St+1 < c) ∪ (St+2 < c) ∪ · · · ∪ (St+k < c)|Ft]

= P [(−St+1 > −c) ∪ (−St+2 > −c) ∪ · · · ∪ (−St+k > −c)|Ft]

= 1− P [−St+1 ≤ −c,−St+2 ≤ −c, · · · ,−St+k ≤ −c|Ft]

= 1− F−St+1,−St+2,··· ,−St+k|Ft(−c,−c, · · · ,−c),

(4.1.1)

where Ft is the σ-�eld generated by past and actual spread data; that is Ft ≡ σ (S1, . . . , St−1, St).

If the assumption that a speci�c Gaussian linear state space model is appropriate for the spread
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(something that needs checking in practical implementations), the conditional distribution func-

tions described in Eqs.(4.1.1) correspond to

St,k ≡



St+1

St+2

...

St+k


|Ft ∼ N (µt,k,Σt,k) , (4.1.2)

where µt,k ≡ E (St,k|Ft) and Σt,k ≡ Var (St,k|Ft). Sticking to the notation established in

Appendix A.1 for key quantities related to the Kalman �lter and also de�ning Pt+i,t+j|t ≡

Cov(αt+i, αt+j|Ft), for i, j = 1, 2, . . . , k and i < j (recall that Pt+i,t+j|t = P
′

t+j,t+i|t), it follows

that each entry of µt,k is given by

E(St+i|Ft) = E(Zt+iαt+i + dt+i + εt+i|Ft)

= Zt+iE(αt+i|Ft) + dt+i + E(εt+i|Ft)

= Zt+iE(αt+i|Ft) + dt+i + E(εt+i) (4.1.3)

= Zt+iat+i|t + dt+i.

Regarding Σt,k, its diagonal and o�-diagonal blocks are given respectively by

Var(St+i|Ft) = Zt+iVar(αt+i|Ft)Z ′t+i + Var(εt+i|Ft)

+ Zt+iCov(αt+i, εt+i|Ft) + Cov(εt+i, αt+i|Ft)Z ′t+i (4.1.4)

= Zt+iPt+i|tZ
′
t+i +Ht+i,

(4.1.5)
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Cov(St+i, St+j|Ft) = Cov(Zt+iαt+i + dt+i + εt+i, Zt+jαt+j + dt+j + εt+j|Ft)

= Zt+iCov(αt+i, αt+j|Ft)Z ′t+j + Zt+iCov(εt+i, εt+j|Ft) (4.1.6)

+ Cov(εt+i, αt+j|Ft)Z ′t+i + Cov(εt+i, εt+j|Ft)

= Zt+iPt+i,t+j|tZ
′
t+j.

4.2 Mean-reverting conditional probabilities pup and pdown:

practical evaluation

For each t, the �rst- and second-order conditional moments displayed in Eqs.(4.1.3)

and (4.1.4) are trivially obtained from the Kalman �lter in Eqs.(A.1.2) applied with the data

subset {S1, S2, . . . , St} enlarged with k missing values after the last spread St; that is, one

has to consider {S1, S2, . . . , St, .NaN, .NaN, . . . , .NaN}, where the acronym �.NaN" means �Not

Available Number" and appears k times exactly right after St. Following [9], Sec.4.9, this is

the recognition that, under the state space modeling approach, forecasting is a particular case

of missing values estimation. On the other hand, to be calculated, Eqs.(4.1.6) shall depend on

additional implementation of Kalman recursions other than those revisited in Appendix A.1 �

speci�cally, those derived in [9], Sec.4.5, with appropriate adaptations for the case of missing

values. In order to avoid this computational e�ort, which is not always available as a ready-

to-use option o�ered by commercial softwares and neither is considered in usual Kalman �lter

codes suggested in textbooks, in this work we propose an alternative. Our proposal will make

use of already implemented formulae known to time series analysts.

The building block for routinely evaluating Eqs.(4.1.3), (4.1.4) and (4.1.6) for each time

t is to use an augmented state space form equivalent to a given time series model formerly

selected and estimated with the spread data. In this paper, the models considered are those
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previosly discussed in Sections 3.2 and 3.3. This task consists of �guring up k new blocks to

the state vector in Eqs.(A.1.1), each one having the same dimension of the original state vector.

Formally:

Yt =

[
Zt 0 . . . 0

]


αt

αt−1

...

αt−k


+ dt + εt,



αt+1

αt

...

αt−(k−1)


=



Tk 0 · · · 0

I 0 · · · 0

...
. . . · · · ...

0 · · · I 0





αt

αt−1

...

αt−k


+



ct

0

...

0


+



Rt

0

...

0


ηt, (4.2.1)

where Zt, dt, Tt, Rt and ct are the system matrices of the original model. With this enlarged

state space form, we apply the Kalman �lter k-steps ahead prediction in a given time t to

obtain �rst- and second-order conditional moments of (αt+1, . . . , αt+k)
′; with these quantities,

the calculation of the �rst- and second-order moments displayed in Eqs.(4.1.3), (4.1.4) and

(4.1.6) becomes straightforward.

Denote the vectors of unknown parameters associated with Eqs.(4.2.1) and (A.1.1) by

ψ†̃ and ψ† respectively, and the corresponding likelihood functions by L†̃ and L†. Since the

augmented model does not carry o� any new parameters, it trivially follows that ψ†̃=ψ†. Even

though it is not that easy to claim the same for the maximum likelihood estimators obtained

under L†̃ and L†, the next proposition, whose proof is in Appendix A.3, asserts that it is indeed

the case:

Proposition 2. ψ̂† ≡ arg maxL(ψ†) = arg maxL†̃(ψ†̃) ≡ ψ̂†̃.
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This result and its proof are admittedly inspired on Theorem 2 of [3], but we decided to include

them here in detail, with proper adaptations from the former proof, in order to make this paper

more self-contained.

The interpretation of Proposition 2 is that there are no changes in maximum likelihood

estimation when considering the augmented model in Eqs.(4.2.1); hence, does not need to use

the latter to estimate the parameters, something that would create additional and unnecessary

computational endeavor. Instead, the estimation of unknown parameters can be accomplished

using the original model in Eqs.(A.1.1) and the estimates obtained shall be used with the

augmented model. From a practical standpoint, this result shall prove to be a key one in the

applications of Chapter 5 for speeding up the calculation of the probabilities in Eqs.(4.1.1).

Finally, once µt,k and Σt,k in Eq.(4.1.2) are calculated, the conditional probabilities

in Eqs.(4.1.1) shall be evaluated through standard numerical multiple integration algorithms,

which have been adapted for multivariate normal distributions framework � see for instance [8],

[17], [18] and [7].

4.3 The strategy

Assuming that a particular state space model has been already estimated with available

time series data from the spread process St � the latter is associated with a pair of assets A1

and A2 � and that the numerical devices discussed in Section 4.2 have been implemented, we

are now able to propose our trading rule. Summarily, this can be split in two mutually exclusive

situations:

� If the observed value of St is found minimally below (let us say: for δ units) a long term

value c, the very same used along Eqs.(4.1.1) and previously �xed in a particular value

(for instance: c = 0, should one choose the spread mean), and pup in Eq.(4.1.1) is found
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above some �large� value p∗up, buy the spread.

� If the observed value of St is found minimally above c (without loosing generality, consider

the same amount δ) and pdown in Eq.(4.1.1) is found above some �large� value p∗down, sell

the spread.

The items above deserve some quali�cation. Firstly, the meaning of the expression �buy

the spread� is: the lower priced asset (in this case, A1 � see Eq.(3.1.1) is bought and the other

asset is sold. The expression �sell the spread� could be analogously explained. Secondly, it

is worth noticing that either the �rst situation (long position) or the second (short position)

shall occur when the spread deviates more than or less than δ, the latter being a threshold

that guarantees a minimum pro�table trade after costs. Thirdly, since their values are priory

set, p∗up and p∗down necessarily re�ect risk aversion and one does have the option of choosing

di�erent values for each one. Fourthly, the position (either long or short) shall be disabled

whenever the spread hits the long-term value c, or when it does not return in k-steps ahead

� recall Eqs.(4.1.1). Finally, even though the two situations are mutually exclusive, these are

certainly not exhaustive: indeed, if the conditions required for each of them are not met, the

capital remains invested in some �xed income market until one of the �triggers� is activated.

The choices for the parameters δ, p∗up, p
∗
down, c and k considered in this paper will be given in

the applications of Chapter 5.

When the strategy just described is adopted, the main risk one might be exposed to is

that related to speci�c fundamental changes: the prices of A1 and A2 may diverge, which means

that the spread, not stationary anymore, is not hitting its former long term value c. Actually,

the parameter k has precisely the function of mitigating such divergence risk. Another aspect

is that the target return must always be higher than the return earned in the �xed income

market because it is the opportunity cost inherent to this strategy. The parameter δ is present
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here to try to controls such point.



Chapter 5

Applications

This section presents the results of applying models from Chapter 3 and the pairs trading

strategy derived in Chapter 4 with real data from the US and Brazilian markets. In Section 5.1

we describe the data used in the estimations and justify our choice of the stocks as candidates to

form pairs. In Section 5.2 we present the results regarding co-integration tests, model estimation

and goodness-of-�t, and the strategy performances.

5.1 The data and some computational details

All the �nancial time series used in the implementations have been obtained from

Bloomberg Professional service. Four of them, considered in two of the three exercises of-

fered here, consist of daily stock prices of two securities: Exxon Mobil Corporation (traded in

the NYSE with the symbol XOM) and Southwest Airlines Co (traded in the NYSE with the

symbol LUV). ExxonMobil Corporation is the world's largest traded international oil and gas

company and has its headquarters located in Texas in the US. Southwest Airlines Co operates

passenger airlines that provide scheduled air transportation services in the United States. The

other exercise in the US equity market consist of modeling daily stock prices of two ETFs:

23
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Market Vectors Gold Miners ETF (traded in the NYSE Arca with the symbol GDX) and

SPDR Gold Shares (traded in the NYSE Arca with the symbol GLD). Market Vectors Gold

Miners seeks to replicate as closely as possible, before fees and expenses, the price and yield

performance of the NYSE Arca Gold Miners Index. SPDR Gold Shares seeks to replicate the

performance of the price of gold bullion. ETF (Exchange Traded Fund) is a security that tracks

an index, a commodity or a basket of assets like an index fund, but is traded as a stock on

an exchange. For these four stocks, the period considered goes from September 22nd, 2011 till

September 20th, 2012. Two other series, corresponding to the third exercise, are daily stock

prices of Vale (traded in the stock exchange BMF&BOVESPA in Sao Paulo with the symbol

VALE5) and Bradespar (traded in the stock exchange BMF&BOVESPA in Sao Paulo with the

symbol BRAP4). Vale is the second largest mining company in the world and the largest private

company in Brazil. It is the largest producer of iron ore in the world and the second largest

of nickel. Bradespar is an investment company seeeking to create value for its shareholders

through relevant interests in companies that are leaders in their operational areas. Currently,

Bradespar holds a stake in Vale, acting directly in senior management, with members on the

Board of Directors and Advisory Committees. We have used available data for these two stocks

from August 29th, 2011 till September 20th, 2012. In view of the de�nition of pair given and

discussed in Chapter 3, the stocks described above have been chosen mainly because, in view

of their details given above, XOM and LUV, GDX and GLD like VALE5 and BRAP4 are

supposedly long-term related.

Also, the following asset class indexes have been used in the strategy results evaluation:

� Libor - 1 year: This indicator stands for London Interbank O�ered Rate. It is the rate

that banks use to borrow from and lend to one another in the wholesale money markets

in London.
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� Standard and Poor's 500 Index (S&P): This is a capitalization-weighted index of 500

stocks representing all major industries and is designed to measure performance of the

broad domestic economy through changes in the aggregate market.

� Inter-bank deposit certi�cate (CDI): This indicator is the overnight rate in Brazil. As

such, this play the very same role as Libor does. Despite of being a market rate, the CDI

is closely tied to the interest rate, which is �xed by the Brazilian Central Bank on the

course of monetary policy decisions.

� Bovespa Index (Ibovespa): This is the main indicator of the Brazilian stock market's

average performance. The relevance of this index comes from several reasons; one of

them is the integrity of its historical series, which have been regularly calculated without

any methodological change since its inception in 1968.

5.2 Results

We begin by checking whether XOM-LUV, GDX-GLD and VALE5-BRAP4 show degrees

of mutual equilibrium in the periods considered. This is assessed by testing co-integration

hypotheses. See Section 3.1. For such, we used the two-step Engle Granger co-integration test,

which is essentially an augmented Dickey-Fuller unit root test performed with the ordinary

least squares (OLS) residuals (this is the second step), obtained after regressing one time series

on the other (this is the �rst step); the critical values for the unit root test must be conveniently

modi�ed � cf. [14], [12], Chap.6, and [27]. Once the co-integration hypothesis is not rejected,

the spread to be considered in upcoming analyses shall be simply the OLS residuals � recall

Eq.(3.1.1) in Section 3.1. The Engle-Granger test results were obtained from EViews 4.0.

Looking at Table 5.1, we see that the data give enough evidence in favor of co-integration for
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both XOM-LUV and VALE5-BRA4. The pair GDX-GLD can also be considered co-integrated

at a 10% level.

Table 5.1: Engle-Granger cointegra-

tion tests with the pairs.

Pairs Dicker-Fuller Test*

XOM-LUV -3.006**

VALE5-BRAP4 -4.059**

GDX-GLD -1.952 ***

* Critical values considered have been

taken from [27].

** Pair was considered stationary at a 5%

level.

*** Pair was considered stationary at a 10%

level.

Moving on, we now examine the information depicted in Table 5.2, 5.3, 5.4. This con-

tains information concerning goodness-of-�t for three parsimonious ARMA (p, q) models and the

model proposed by Elliot et al., along with some diagnostics performed with the standardized

residuals υSt =
υt√
Ft
, where υt and

√
Ft are obtained from Eqs.(A.1.2). The implementations

have been carried out using MATLAB 7.6.0. The unknown parameters were estimated by max-

imum likelihood, in which we adopted the exact log-likelihood function displayed in Eq.(A.1.3).

See Appendix A.1. First, we see that, for each of models estimated with spreads from both US

and Brazilian markets, the data are reproduced by each of the models almost under similar ca-

pabilities according to Pseudo R2 and MSE measures. However, AIC and BIC criteria do reveal

that the AR (1) model, which is the simplest option, shows the best complexity/�t relation.



5.2. RESULTS 27

Before addressing the diagnostics, it is worth bearing in mind that, if a given linear Gaussian

state space model is adequate for the data at hand, the standardized residuals must behave

like i.i.d. standard normal random variables. Regarding serial dependence, Ljung-Box tests for

both level and squared standardized residuals showed good results for all models and spreads

from both markets. The Jarque-Bera normality test and the coverage Kupiec tests agreed on

revealing adequacy for the pair XOM-LUV. On the other hand, even though the Kupiec tests

suggested that the standardized residuals from all the models estimated with VALE5-BRAP4

and GDX-GLD spread seem to come from a probability distribution similar to the standard

normal distribution as regards tails, the Jarque-Bera test unveiled discrepancies. Therefore,

some care must be exercised in interpreting and even using the conditional probabilities pup

and pdown in Eqs.(4.1.1) in trading decisions � indeed: pup and pdown are not �tail� probabilities.
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Table 5.2: Results from the estimations with the pair XOM-LUV

(p-values in parentheses).

XOM-LUV

Attribute AR(1) AR(2) ARMA(1,1) Elliot

Log-likelihood -989.044 -989.044 -989.044 -989.081

Pseudo R2 0.896 0.896 0.896 0.902

MSE x 10−4 2.299 2.298 2.299 2.161

AIC 7.865 7.873 7.873 7.882

BIC 7.893 7.915 7.915 7.938

LR Kupiec test (superior)* 0.077 0.077 0.077 0.434

(0.781) (0.781) (0.781) (0.510)

LR Kupiec test (inferior)* 0.434 0.434 0.434 0.434

(0.510) (0.510) (0.510) (0.510)

Ljung-Box test 1(20 lags) ** 13.718 13.727 13.726 13.684

(0.845) (0.844) (0.844) (0.846)

Ljung-Box test 2 (20 lags) *** 29.557 26.679 29.669 29.582

(0.148) (0.145) (0.145) (0.152)

Jarque-Bera test 0.709 0.706 0.706 0.703

(0.685) (0.687) (0.689) (0.688)

Mean**** 0.069 0.068 0.068 0.085

Variance**** 0.999 0.999 0.999 0.997

* These are likelihood ratio unconditional coverage tests proposed by [24].

The �rst and second tests check standard residual violations of 95% and 5%

standard normal distribution quantiles (that is: 1,65 and -1,65) respectively.

** This test has been performed with the standardized residuals.

*** This test has been performed with the squared standardized residuals.

**** These sample statistics have been calculated with the standardized resid-

uals.
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Table 5.3: Results from the estimations with the pair

GDX-GLD (p-values in parentheses).

GDX-GLD

Attribute AR(1) ARMA(1,1) Elliot

Log-likelihood -885.036 -885.124 -885.126

Pseudo R2 0.935 0.935 0.935

MSE x 10−4 3.325 3.323 3.337

AIC 7.040 7.048 7.056

BIC 7.068 7.091 7.112

LR Kupiec test (superior)* 0.434 0.434 0.434

(0.510) (0.510) (0.510)

LR Kupiec test (inferior)* 0.296 0.987 0.296

(0.587) (0.320) (0.587)

Ljung-Box test 1(20 lags) ** 28.829 29.411 28.853

(0.091) (0.080) (0.091)

Ljung-Box test 2 (20 lags) *** 12.664 12.606 12.707

(0.891) (0.894) (0.890)

Jarque-Bera test 299.843 309.519 299.517

(0.000) (0.000) (0.000)

Mean**** -0.023 -0.024 -0.019

Variance**** 1.002 1.002 1.002

* These are likelihood ratio unconditional coverage tests proposed

by [24]. The �rst and second tests check standard residual vi-

olations of 95% and 5% standard normal distribution quantiles

(that is: 1,65 and -1,65) respectively.

** This test has been performed with the standardized residuals.

*** This test has been performed with the squared standardized

residuals.

**** These sample statistics have been calculated with the stan-

dardized residuals.
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Table 5.4: Results from the estimations with the pair VALE5-BRAP4

(p-values in parentheses).

VALE5-BRAP4

Attribute AR(1) AR(2) ARMA(1,1) Elliot

Log-likelihood -1053.502 -1060.960 -1068.300 -1068.310

Pseudo R2 0.767 0.780 0.788 0.789

MSE x 10−4 0.905 0.857 0.8130 0.8110

AIC 8.377 8.444 8.502 8.510

BIC 8.405 8.486 8.544 8.566

LR Kupiec test (superior)* 0.987 0.987 0.015 0.015

(0.320) (0.320) (0.903) (0.903)

LR Kupiec test (inferior)* 2.952 0.434 0.434 0.434

(0.086) (0.510) (0.510) (0.510)

Ljung-Box test 1(20 lags) ** 29.706 23.628 18.040 18.035

(0.075) (0.259) (0.585) (0.585)

Ljung-Box test 2 (20 lags) *** 13.891 13.694 16.381 16.473

(0.836) (0.832) (0.693) (0.687)

Jarque-Bera test 22.602 24.308 24.880 24.914

(0.002) (0.001) (0.001) (0.001)

Mean**** -0.019 -0.029 -0.045 -0.049

Variance**** 1.004 1.003 1.002 1.002

* These are likelihood ratio unconditional coverage tests proposed by [24]. The

�rst and second tests check standard residual violations of 95% and 5% stan-

dard normal distribution quantiles (that is: 1,65 and -1,65) respectively.

** This test has been performed with the standardized residuals.

*** This test has been performed with the squared standardized residuals.

**** These sample statistics have been calculated with the standardized residuals.
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Now, we start the discussion about the pairs trading strategy performances. The pa-

rameter c is set to zero, which is the long-term mean of the spreads, since these are precisely

the OLS residual time series from co-integration regressions. Regarding the parameter value δ:

since operating costs, due to slippage (this is the di�erence between the trade expected price

and the trade actual price) and transaction, are being ignored here, δ is set to 0.5% to overcome

this �aw. In view of these two choices for c and δ, a position to buy (sell) spread is open, if and

only if, the spread is less (greater) than -δ (+δ). Finally, regarding the conditional probabilities

pup and pdown, their threshold values p∗up and p
∗
down are both set to 80% and the parameter k was

de�ned arbitrarily as 25 days, meaning that the strategy will be closed if, once the spread is

bought or sold, the pair does not return to its long-term mean after 25 days at current market

prices � the latter being an event with conditional probability of 20% at the most (whenever

model assumptions are satis�ed).

Table 5.5 and Figures 5.1, 5.2, 5.3 and 5.4 display the results corresponding to the

pair XOM-LUV for the four linear state space models already under investigation. These

also show results from traditional benchmarks of the USA �nancial market already detailed in

Section 5.1, and the performance of something we term the plain strategy: the spread for this

strategy is de�ned as the ratio between the highest and lowest price assets, and the trading

strategy, formerly addressed by [16], consists of opening a position with two assets whenever

their corresponding spread deviates more than two historical (sample) standard deviations, and

unwinding the position when it returns to the spread historical mean â in case of prices do not

converge after the end of the trading interval, gains and losses are calculated at the end of the

last trading day. Analyzing Table 5.5, Sharpe ratios, calculated here for being used as the main

criterion for choosing the best strategy (since these measure return performances adjusted to

market risk, cf. [34] and [35]), indicate that the best trading options in the period considered
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have been our pairs trading strategy implemented with AR (2) and ARMA (1, 1) models, both

presenting the same cumulative return and historical volatility. Cumulative and average returns

corresponding to these two models are larger than the others, except for the plain strategy.

However, due to its quite larger volatility, the latter has a worse Sharpe ratio. Additionally,

low correlations with the stock index(S&P) are observed � the latter have been previously

expected, since this type of strategy is supposedly market neutral. Figure 5.1, 5.2, 5.3 and

5.4 depict cumulative returns for the four state space model, together with cumulative returns

from the market indices and the plain strategy, corroborating and illustrating the �ndings from

Table 5.5.

Table 5.5: USA market data: performance measures from four di�erent models for the spread

and from three benchmarks

XOM-LUV Benchmarks

Measures AR(1) AR(2) ARMA(1,1) ELLIOT LIBOR S&P Plain strategy

Average return 0.066% 0.077% 0.077% 0.066% 0.0004% 0.077% 0.080%

Volatility* 0.645% 0.595% 0.595% 0.645% 0.00004% 1.034% 0.751%

Cumulative return 15.648% 18.606% 18.606% 15.648% 0.095% 17.573% 19.086%

Sharpe ratio 1.601 2.066 2.066 1.602 - 1.122 1.678

Correlation** 0.160 0.150 0.150 0.160 0.021 1.000 0.006

* This is the standard deviation calculated with the daily returns.

** Correlation between the daily returns from the strategy P/L and the equity market (S&P).

*** Ratio between accumulated returns from the strategy P/L and the Libor in percentual terms.
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Figure 5.1: AR(1) Model. Comparison among cumulative returns: strategy P/L with the pair

XOM-LUV, Libor, S&P and plain strategy.

Figure 5.2: AR(2) Model. Comparison among cumulative returns: strategy P/L with the pair

XOM-LUV, Libor, S&P and plain strategy.
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Figure 5.3: ARMA(1,1) Model. Comparison among cumulative returns: strategy P/L with the

pair XOM-LUV, Libor, S&P and plain strategy.

Figure 5.4: ELLIOT Model. Comparison among cumulative returns: strategy P/L with the

pair XOM-LUV, Libor, S&P and plain strategy.
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Now, analysing the results from the pair GDX-GLD in Table 5.6 and Figures 5.5, 5.6, 5.7,

we see that the best performances, relying once again on Sharpe ratio comparisons, are those

corresponding to model plain strategy. This has also shown low cumulative return and small

volatility in the period. The low volatility is due to the small number of negotiations (only

one) in the interval trading. Notice also that, in terms of cumulative returns, the S&P and the

Elliot et al. model had the best performance and the S&P is showing a higher risk-return ratio

in the period considered.

Table 5.6: USA market data: performance measures from four di�erent models for

the spread and from three benchmarks

GDX-GLD Benchmarks

Measures AR(1) ARMA(1,1) ELLIOT LIBOR S&P Plain strategy

Average return 0.047% 0.047% 0.065% 0.0004% 0.077% 0.019%

Volatility* 1.388% 1.388% 1.364% 0.00004% 1.034% 0.242%

Cumulative return 8.772% 8.772% 13.485% 0.095% 17.573% 4.121%

Sharpe ratio 0.415 0.415 0.651 - 1.122 1.105

Correlation** 0.068 0.068 0.062 0.021 1.000 0.181

* This is the standard deviation calculated with the daily returns.

** Correlation between the daily returns from the strategy P/L and the equity market (S&P).

*** Ratio between accumulated returns from the strategy P/L and the Libor in percentual terms.
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Figure 5.5: AR(1) Model. Comparison among cumulative returns: strategy P/L with the pair

GDX-GLD, Libor, S&P and plain strategy.

Figure 5.6: ARMA(1,1) Model. Comparison among cumulative returns: strategy P/L with the

pair GDX-GLD, Libor, S&P and plain strategy.
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Figure 5.7: ELLIOT Model. Comparison among cumulative returns: strategy P/L with the

pair GDX-GLD, Libor, S&P and plain strategy.

Likewise, both Table 5.7 and Figures 5.8, 5.9, 5.10 and 5.11 show the results for the

pair VALE5-BRAP4. The best performances, relying once again on Sharpe ratio comparisons,

are those corresponding to models AR (1) and AR (2) � these have also shown low correlations

with the Ibovespa domestic stock index. In Figures 5.8, 5.9, 5.10 and 5.11, it is suggested that

cumulative returns coming from our pairs trading strategy, implemented with the best two

models, maintained an upward trend with relatively low volatility, probably corroborating the

best Sharpe ratios. On the other hand, even though did Ibovespa present larger �nal return

in the period considered amongst all the investment alternatives, one should notice its huge

risky behavior (compare volatilities in Table 5.4), which have certainly contributed for some

temporary losses. This can be seen on the downward and persistent reverses for this index in

Figures 5.8, 5.9, 5.10 and 5.11. Notice also that, in terms of cumulative returns, Ibovespa has

been the worst investment option for several moments in the period considered.
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Table 5.7: Brazilian market data: performance measures from four di�erent models for the

spread and from three benchmarks.

VALE5-BRAP4 Benchmarks

Measures AR(1) AR(2) ARMA(1,1) ELLIOT CDI IBOVESPA Plain strategy

Average return 0.084% 0.083% 0.063% 0.063% 0.036% 0.095% 0.035%

Volatility* 0.9505% 0.933% 0.881% 0.881% 0.005% 1.494% 0.261%

Cumulative return 19.878% 19.592% 9.872% 9.872% 8.550% 21.064% 8.202%

Sharpe ratio 0.789 0.784 0.0994 0.0994 - 0.5547 -0.0884

Correlation ** 0.036 0.050 0.033 0.033 0.038 1.000 0.009

%CDI *** 232.49% 229.15% 115.46% 115.46% 100.00% 246.36% 95.93%

* This the standard deviation calculated with the daily returns.

** Correlation between the daily returns from the strategy P/L and the equity market (IBOVESPA).

*** Ratio between accumulated returns from the strategy P/L and the CDI in percentual terms.
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Figure 5.8: AR(1) Model. Comparison among cumulative returns: strategy P/L with the pair

VALE5-BRAP4, CDI, IBOVESPA and plain strategy.

Figure 5.9: AR(2) Model. Comparison among cumulative returns: strategy P/L with the pair

VALE5-BRAP4, CDI, IBOVESPA and plain strategy.
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Figure 5.10: ARMA(1,1) Model. Comparison among cumulative returns: strategy P/L with

the pair VALE5-BRAP4, CDI, IBOVESPA and plain strategy.

Figure 5.11: ELLIOT Model. Comparison among cumulative returns: strategy P/L with the

pair VALE5-BRAP4, CDI, IBOVESPA and plain strategy.
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Finally, Table 5.8 shows the computational gain, in terms of estimation time, due to the

Proposition 2 of this work. Even though the information corresponding to model estimations

with a portfolio with just a pair of assets in a daily basis, it is plausible to assume that the

augmented model would also be excessively time consuming, should we have adopted and

implemented the modeling and pairs trading strategy proposed in this work with intraday

high frequency data â estimation times would have been even increased in case of a portfolio

containing several pairs. For instance, the augmented model with k = 25 for the Elliot's model

required almost three minutes to be estimated; the original model took less than three seconds.

Table 5.8: Computational times (seconds) for maximum likelihood estimation of the models with

the pair VALE5-BRAP4.

Models Original Model Augmented Model (k=10) Augmented Model (k=15) Augmented Model (k=20) Augmented Model (k=25)

ELLIOT 2.481 6.113 14.049 44.603 152.091

AR(1) 0.579 1.125 2.250 7.513 24.086

AR(2) 0.939 1.737 4.026 12.725 41.557

ARMA(1,1) 0.891 2.004 5.716 18.154 58.531
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Chapter 6

Conclusion

In this dissertation we developed a new pairs trading strategy based on linear state

space models and the Kalman Filter. As opposed to other approaches found in the literature,

neither point forecasts nor con�dence bands constitute any basis for decisions regarding trading

operations; instead, we look at the conditional probability that the value of the mispriced spread

will mean-revert eventually by some pre-established horizon. The evidences gathered from the

three applications detailed along Chapter 5, even though limited (and therefore far from being

conclusive), suggest that this change of direction in usual pairs trading paradigms might work

well in practice. At the end of this work, we address some points potentially relevant and

in tune with the �nancial market reality for the case of implementing the strategy under real

scenarios.

We start by suggesting that further investigations about how the parameters c, k and δ,

which have been held constant in the examples of this work, must be set (notice that nothing

prevents them from being estimated â or, should one prefer, optimized under usual back-testing

schemes). One might also enhance the use of such parameters. For instance, the parameter

δ, although designed here to simultaneously take into account the transaction costs from both

43
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long and short positions, might be doubled: a δ1 for one type of position and a δ2 for the

other. In the case of short positions, a very important cost, which anyone willing to adopt any

pairs trading strategy (including ours) must pay attention to, is the rented asset cost. Since

transactions fees vary according to the type of investment, analysis on these latter would help

to identify how well our strategy would be suitable. More details on these costs in the Brazilian

market can be found www.bmfbovespa.com.br, and for the New York Stock Exchange, one is

referred to nyse.nyx.com.

Moving on, we now take a closer look at the question of distributional assumptions, as strong

violations of normality can make the quantities pup and pdown pretty unreliable as proxies

for the true conditional probability of mean-reverting. An alternative for dealing with such

inconvenient situation is to rely on Monte Carlo simulation of future trajectories of the spread

St k steps ahead. For the case of the ARMA models, this would require modeling the error

term with the aid of standardized residuals. A second alternative, which releases one from

choosing/modeling error distributions (but is quite more demanding in computational terms),

is to adopt some bootstrap procedure to estimate the mean-reverting conditional probabilities.

Wall & Sto�er [40] and Rodriguez & Ruiz [31] are two papers of a certainly large list of references

on bootstrapping state space models â these two papers seem to have methodologies that shall

address the aims being discussed here.

Lastly, we discuss the use of our strategy in high-frequency data. The analysis of these data

are complicated by irregular temporal spacing, daily patterns and price discreteness (cf. [1],

Ch.7). Another major characteristic of high frequency data is the strong intra-day seasonal

behavior of the volatility, as pointed by [15], Ch.4. A data generating process with strong

seasonal patterns cannot be stationary. Therefore, controlling these periodical movements

before �tting any time series model to the data should be a mandatory initial step. In light
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of these issues typically related to high-frequency situations, other state space models shall be

combined with the pairs trading strategy proposed in this work.
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Appendix A

Appendix

A.1 Linear state space models and the Kalman �lter

By a Gaussian linear state space model we mean the following measurement equation,

state equation and initial state vector:

Yt = Ztαt + dt + εt , εt ∼ NID(0, Ht)

αt+1 = Ttαt + ct +Rtηt , ηt ∼ NID(0, Qt)

α1 ∼ N(a1, P1).

(A.1.1)

The former equation is an a�ne function relating the observed p-variate time series Yt to the

generally unobserved m-variate state vector αt and the latter equation gives the state evolution

through a Markovian structure. The random errors εt and ηt are independent (in time, between

each other and of α1). The system matrices Zt, dt, Ht, Tt, ct, Rt and Qt are deterministic or,

at most, depend on past of Yt. In the latter case, [20] , Sec. 3.7, refers to Eq. (A.1.1) as a

conditionally Gaussian state space model.

For a given time series of size n and any time instants t,j ∈ {1, 2, . . . n}, de�ne Fj ≡

σ (Y1, . . . , Yj), at|j ≡ E (αt|Fj) and Pt|j ≡ Var (αt|Fj). The Kalman �ltering consists of recursive

equations for these �rst- and second-order conditional moments, corresponding to one-step-
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ahead prediction (j = t− 1) and smoothing (j = n). The formulae corresponding to prediction

are given below:

υt = Yt − Ztat|t−1 − dt, Ft = ZtPt|t−1Z
′
t +Ht,

Kt = TtPt|t−1Z
′
tF
−1
t , Lt = Tt −KtZt, t = 1, . . . , n, (A.1.2)

at+1|t = Ttat|t−1 + ct +Ktυt, Pt+1|t = TtPt|t−1L
′
t +RtQtR

′
t,

The derivations of Eqs.(A.1.2) are found in [9]. There are several other references on

this subject that deserve mentioning, such as [20], [21], [5], [6], [19] and[36].

In practice, system matrices include unknown parameters that must be estimated. By

grouping all unknown parameters of the model described in (A.1.1) in a vector ψ, and denoting

its corresponding parametric space by Θ, one can obtain an exact log-likelihood function, using

some outputs from Eqs.(A.1.2):

logL(ψ) = −np
2

log−1

2

n∑
t=1

(
log |Ft|+ υ′tF

−1
t υt

)
, ∀ψ ∈ Θ. (A.1.3)

The maximum likelihood estimator of ψ is de�ned by ψ̂ ≡ arg maxψ∈Θ logL(ψ). When the nor-

mality assumption for (ε′t, η
′
t)
′ is violated, Eq.(A.1.3) should be viewed as a quasi log-likelihood

function and ψ̂, in its turn, as a quasi maximum likelihood estimator.

A.2 Proof of Proposition 1

From the second equation of Eqs.(3.2.1), it follows that

xt = a+ (1− b)xt−1 + Cηt ≡ a+Bxt−1 + η∗t ,

where η∗t ∼ N(0, C2). Therefore, (1−BL)xt = xt −Bxt−1 = a+ η∗t , leading to

xt =
1

(1−BL)
a+

1

(1−BL)
η∗t =

a

(1−B)
+

a

(1−BL)
η∗t , (A.2.1)
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where L is the usual lag operator (recall: 0 < b < 2). Now place Eq.(A.2.1) in the �rst equation

of Eqs.(A.2.1) to get

St =
a

(1−BL)
+

1

(1−BL)
η∗t +Dεt =

a

(1−BL)
+

1

(1−BL)
η∗t +Dε∗t (A.2.2)

where ε∗t ∼ N(0, D2).

Applying the operator (1−BL) on both sides of Eq.(A.2.2),

S∗t ≡ (1−BL)St = a+ η∗t + ω∗t −Bω∗t−1 (A.2.3)

From Eq.(A.2.3), it is straighforward to see that

γ(0) = C2 + (1 +B2)D2, γ(1) = C2 + (1−B)D2, γ(k) = 0, k ≥ 2, (A.2.4)

where γ(k) = Cov(S∗t , S
∗
t−k), k = ±1,±2, . . .

From Eqs.(A.2.4) and [5], p.89, Prop.3.2.1, it follows that S∗t ∼ MA(1).

A.3 Proof of Proposition 2

We have to prove that the likelihood function from models † (original) and †̃ (augmented) are

equal; in other words, L† = L†̃ over all the parametric space. For such, it is su�cient to show

that υ†t = υ†̃t for each t = 1, . . . , n. Notice that

υ†t = y†t − Zta
†
t|t−1 − d

†
t and υ†̃t = y†̃t − Zta

†̃
t|t−1 − d

†̃
t , (A.3.1)

where a†̃t|t−1 ≡ E(αt|F †̃t−1) and d†t = d†̃t . Besides, under the augmented model in Eqs.(4.2.1), the

recursive solution for the measurement equation, for an arbitrary s = 1, . . . , t− 1, is
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Y †̃s =

[
Zs 0 · · · 0

]



s−1∏
j=1



Tj 0 · · · 0

I 0 · · · 0

...
. . . · · · ...

0 · · · I 0




[
α̃1

]
+

s−2∑
j=1


s−1∏

k=j+1



Tk 0 · · · 0

I 0 · · · 0

...
. . . · · · ...

0 · · · I 0









Rj

0

...

0


ηj +



cj

0

...

0




+

+

[
Zs 0 · · · 0

]




cs−1

0

...

0


+



Rs−1

0

...

0


ηs−1


+ ds + εs, (A.3.2)

where α̃1 is an initial state vector with appropriate 1st and 2nd moments.

Now, observe that

s−1∏
j=1



Tk 0 · · · 0

I 0 · · · 0

...
. . . · · · ...

0 · · · I 0


=



∏s−1
j=1 Tj 0 0 · · · 0∏s−1
j=1 Tj+1 0 0 · · · 0∏s−1
j=1 Tj+2 0 0 · · · 0

...
...

...
...

...

Ts−1 0 0 · · · 0

I 0 0 · · · 0



, (A.3.3)
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s−2∑
j=1


s−1∏

k=j+1



Tk 0 · · · 0

I 0 · · · 0

...
. . . · · · ...

0 · · · I 0









Rj

0

...

0


ηj +



cj

0

...

0




=

s−2∑
j=1



∏s−1
k=j+1 Tk (Rjηj + cj)∏s−1
k=j+1 Tk+1 (Rjηj + cj)

...

Ts−1 (Rjηj + cj)

(Rjηj + cj)

0



.

(A.3.4)

Placing (A.3.3) and (A.3.4) properly in (A.3.2) implies

Y †̃s = Zs

{[
s−1∏
j=1

Tj

]
α1 +

s−2∑
j=1

[
s−1∏

k=j+1

Tk

]
(Rjηj + cj) + cs−1 +Rs−1ηs−1

}
+ dt + εs , (A.3.5)

which coincides with the recursive solution of the measurement equation from the original model

(A.1.1). Finally, combine Eq. (A.3.5) and Eq. (A.3.1) to obtain the result.

A.4 Matlab Code

function [para, sumll] = AJUSTEKFAR1(r,k,p,delta,prob)

dados = importdata('SPREAD_GG_1ANO.csv');

spread = dados.data;

tic

Y=spread;

n=length(Y);

pos = n−252+1;
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Y = Y(pos:n,1:3);

%plot(Y);

%legend('Spread Observado');

para0 = [0,0];

[x,fval,exitflag,output] = fminunc(@loglikAR1,para0,optimset('Display','iter',

'MaxFunEvals',5000,'HessUpdate','bfgs'),Y,r);

para = x

sumll = fval

exitflag

output

phi = 1/(1+exp(−para(1)));

sigeta = exp(para(2));

%FKAR1(para,Y,nc,r);

FKAR1_Trading(para,Y,r,k,n,p,delta,prob);

toc

end

function sumll = loglikAR1(para0,Y,r)
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% Chute Inicial

n=length(Y);

phi = 1/(1+exp(−para0(1)));

sigeta = exp(para0(2));

Z = [1 zeros(1,r−1)];

T = [phi; eye(r−1) zeros(r−1,1)];

c = zeros(r,1);

R = [1; zeros(r−1,1)];

Q = sigeta;

at = pinv((eye(r)−T))*c;

Pt =reshape(pinv((eye((r)^2)−kron(T,T)))*vec2mat(R*Q*R',1),r,r);

ll = zeros(n,1) ;

for t=1:n

Ft = Z*Pt*Z';

Kt = T*Pt*Z'*inv(Ft);

inov = Y(t,1) − Z*at;

at = T*at + Kt*inov + c;

Lt= T − Kt*Z;

Pt = T*Pt*Lt'+ R*Q*R';
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ll(t) = − 0.5*(log(Ft)+ (inov^2)/(Ft));

end

sumll = −sum(ll);

end

function [at,Pt,Ft] = FKAR1_Trading(para,Y,r,k,n,p,delta,prob)

% p : posição do ínício do backtesting

%n : tamanho da amostra

%r : ordem do modelo AR

%K : número de passos

phi = 1/(1+exp(−para(1)));

sigeta = exp(para(2));

flag = 0; % Ativa o tipo de estratégia

% Matrizes do Sistema Modelo Aumentado

Z = [1 zeros(1,k−1)];

T = [phi zeros(1,k−1); eye(r+k−2) zeros(k−1,1)];

c = zeros(r+k−1,1);

R = [1; zeros(k−1,1)];

Q = sigeta;
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a1 = pinv((eye(r+k−1)−T))*c;

P1 =reshape(pinv((eye((r+k−1)^2)−kron(T,T)))*vec2mat(R*Q*R',1),r+k−1,r+k−1);

% Dimensão dos vetores de saida

%RECURSOES DE KALMAN

%Condição Inicial

% Matrizes de Outputs

%yup − guarda as probabilidades de subir

%ydown − guarda as probabilidades de cair

%cota − guarda as cotas da estratégia e dos principais benchmarking

yup = zeros(n−p,4);

ydown = zeros(n−p,4);

cota = zeros(n−(p−1),3);

cota(1,:)=100; % Cota inicial

for s=p:n

at = zeros(r+k−1,1,s+k+1);

Pt = zeros(r+k−1,r+k−1,s+k+1);

at(:,:,1)= a1;

Pt(:,:,1)= P1 ;

for t=1:s+k
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if (t<=s)

Ft = Z*Pt(:,:,t)*Z';

Kt = T*Pt(:,:,t)*Z'*inv(Ft);

inov= Y(t,1) − Z*at(:,:,t);

Lt= T − Kt*Z;

at(:,:,t+1) = T*at(:,:,t) + Kt*inov +c;

Pt(:,:,t+1) = T*Pt(:,:,t)*Lt'+ R*Q*R';

else

at(:,:,t+1) = T*at(:,:,t)+c;

Pt(:,:,t+1) = T*Pt(:,:,t)*T'+ R*Q*R';

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Estrategia %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% de %%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Trading %%%%%%%%%%%%%%%%%%%%%%%%

% c (ponto de ativação da estratégia)

% delta − desvio em relação ao equilibrio de longo prazo (c).

X=zeros(1,k);

c=0;
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if flag == 0

contdown =0;

contup=0;

%Probabilidade de Cair

ydown(t−p−(k−1),1) = Y(s,1);

ydown(t−p−(k−1),2) = 1 − mvncdf(X,−at(:,:,s+k)',Pt(:,:,s+k));

ydown(t−p−(k−1),3) = c + delta;

yup(t−p−(k−1),1) = Y(s,1) ;

yup(t−p−(k−1),2) = 1 − mvncdf(X,at(:,:,s+k)',Pt(:,:,s+k));

yup(t−p−(k−1),3) = c + delta;

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1+Y(s,2));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));

cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));

if (ydown(t−p−(k−1),1) >= c + delta && ydown(t−p−(k−1),2)> prob)

flag =1;

contdown = contdown +1;

ydown(t−p−(k−1),4)= contdown;

% if contdown ~= 1

%

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1+(Y(s−1,1)− Y(s,1)));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));

cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));
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%

% end

elseif (yup(t−p−(k−1),1) <= c − delta && yup(t−p−(k−1),2)> prob )

% Probabilidade de Subir

flag=2;

contup = contup + 1;

yup(t−p−(k−1),4)= contup;

% if contup ~= 1

%

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1 + (Y(s,1)− Y(s−1,1)));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));

cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));

%

% end

end

elseif (flag == 1)

contdown = contdown +1;

%ydown(t−p−(k−1),2) = 1 − mvncdf(X,−at(:,:,s+k)',Pt(:,:,s+k));

ydown(t−p−(k−1),1) = Y(s,1);

ydown(t−p−(k−1),3) = c;

ydown(t−p−(k−1),4)= contdown;

yup(t−p−(k−1),1) = Y(s,1) ;

%yup(t−p−(k−1),2) = 1 − mvncdf(X,at(:,:,s+k)',Pt(:,:,s+k));



A.4. MATLAB CODE 59

yup(t−p−(k−1),3) = c;

yup(t−p−(k−1),4)= contup;

if contdown <= k

if ydown(t−p−(k−1),1)<= c

%Desfazer a Estrategia

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1+(Y(s−1,1)− Y(s,1)));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));

cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));

flag=0;

else

% Mantenho a estratégia porque o spread não voltou

% e o número de dias é menor que k.

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1+(Y(s−1,1)− Y(s,1)));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));

cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));

end

else

flag =0;

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1+(Y(s−1,1)− Y(s,1)));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));
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cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));

end

else

contup = contup + 1;

yup(t−p−(k−1),1) = Y(s,1) ;

%yup(t−p−(k−1),2) = 1 − mvncdf(X,at(:,:,s+k)',Pt(:,:,s+k));

yup(t−p−(k−1),3) = c;

yup(t−p−(k−1),4)= contup;

%ydown(t−p−(k−1),2) = 1 − mvncdf(X,−at(:,:,s+k)',Pt(:,:,s+k));

ydown(t−p−(k−1),1) = Y(s,1);

ydown(t−p−(k−1),3) = c;

ydown(t−p−(k−1),4)= contdown;

if contup <= k

if yup(t−p−(k−1),1)>= c

%Desfazer a Estrategia

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1 + (Y(s,1)− Y(s−1,1)));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));

cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));

flag=0;

else
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% Mantenho a estratégia porque o spread não voltou

% e o número de dias é menor que k.

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1 + (Y(s,1)− Y(s−1,1)));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));

cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));

end

else

flag=0;

cota(t−p−(k−2),1)= cota(t−p−(k−1),1)*(1 + (Y(s,1)− Y(s−1,1)));

cota(t−p−(k−2),2)= cota(t−p−(k−1),2)*(1+Y(s,2));

cota(t−p−(k−2),3)= cota(t−p−(k−1),3)*(1+Y(s,3));

end

end

end

plot(cota(:,1),'blue');

hold on

plot(cota(:,2),'green');

hold on

plot(cota(:,3),'red');

legend('P/L','CDI','Ibovespa');
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cota

yup

ydown

end
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